Beryllium-Stickstoff-Verbindungen, 31)

Über die Reaktion von Berylliumbis(dialkylamiden) mit Kohlendioxid: (Dialkylcarbamoyloxy)beryllium-Verbindungen

Heinrich Nöth* und Dieter Schlosser

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-8000 München 2

Fingegangen am 5. April 1988

CO2 reagiert mit monomeren Berylliumbis(dialkylamiden) 1 zu Bis(dialkylcarbamoyloxy)beryllium-Verbindungen 2 mit tetrakoordiniertem Be-Atom. Bei [Be(NiPr₂)₂]₂ und [Be(NMe₂)₂]₃ schiebt sich CO2 nur in die terminalen BeN-Bindungen ein. Dadurch erreichen alle Be-Atome in den Produkten Tetrakoordination. [BeNiPr₂(O₂CNiPr₂)]₂ (4) reagiert in siedendem Toluol mit CO₂ zu 2a, das sich bei Temperaturen >150°C in die vierkernige Verbindung Be₄O(O₂CNiPr₂)₆ (7) zersetzt.

Die Einschiebung von CS₂ in BeN-Bindungen von Berylliumamiden Be(NR₂)₂ gelingt nur, wenn zwei- oder dreifach koordiniertes Beryllium vorliegt und dieses Lewis-Säure-Funktion ausüben kann. Das Ausbleiben der Dithiocarbamat-Bildung bei der Umsetzung von CS2 mit Be(tmp)2 (tmpH = 2,2,6,6-Tetramethylpiperidin) geht auf sterische Hinderung zurück¹⁾. Es war daher wahrscheinlich, daß das im Vergleich mit CS₂ sterisch weniger anspruchsvolle und stärker Lewis-saure CO2 bereitwilliger als CS2 mit Berylliumamiden reagieren würde, zusätzlich begünstigt durch die Bildung der thermodynamisch besonders starken BeO-Bindungen.

Reaktionen

Die monomeren Berylliumbis(dialkylamide)²⁾ 1 nehmen bei Raumtemperatur rasch 2 mol CO₂ gemäß (1) auf. Im Gegensatz zu CS₂ reagiert 1b glatt mit CO₂. Dies zeigt, daß bei den Insertionsreaktionen auch sterische Faktoren eine wichtige Rolle spielen.

Beleg hierfür ist auch die Reaktion von CO₂ mit dimerem Be(NiPr₂)₂ (3) nach (2) zu 4, während sich 3 gegenüber CS₂ unter gleichen Bedingungen inert verhält. In 4 liegt nach Auskunft des ⁹Be-NMR-Spektrums nur tetrakoordiniertes Beryllium-Nitrogen Compounds, 31. - The Reaction of Beryllium Bis(dialkylamides) with Carbon Dioxide: (Dialkylcarbamoyioxy)beryllium Compounds

CO2 reacts with monomeric beryllium bis(dialkylamides) to yield bis(dialkylcarbamoyloxy)beryllium compounds 2 containing a tetracoordinate beryllium atom. CO2 insertion into the BeN bonds of [Be(NiPr₂)₂]₂ and [Be(NMe₂)₂]₃ occurs only at the terminal BeN bonds. The products contain tetracoordinate Be atoms only. [BeNiPr₂(O₂CNiPr₂)₂]₂ (4) reacts with CO₂ in boiling toluene with formation of 2a, which decomposes at >150°C into tetranuclear Be₄O(O₂CNiPr₂)₆ (7).

Be vor. In siedendem Toluol führt die Reaktion aber über die Stufe 4 hinaus gemäß (3) zu 2a. Demnach erfolgt bei

$$\frac{+2 \text{ CO}_{2}}{20 \text{ °C}} \Rightarrow i \text{Pr}_{2} \text{N=C} \bigcirc \text{Be} \bigcirc \text{N=O} \bigcirc \text{C=N/Pr}_{2} \quad (2)$$

$$i \text{Pr}_{2} \text{N-Be} \bigcirc \text{Be-N/Pr}_{2}$$

$$i \text{Pr}_{2} \text{N-Be} \bigcirc \text{N=O} \bigcirc \text{C=N/Pr}_{2} \quad (3)$$

$$\frac{i \text{Pr}_{2}}{110 \text{ °C}} \Rightarrow 2 i \text{Pr}_{2} \text{N=C} \bigcirc \text{Be} \bigcirc \text{C=N/Pr}_{2}$$

$$Me_{2}NBe Ne_{2}Me_{2}$$

$$Me_{2}NBe Ne_{2}Me_{2}$$

$$Me_{2}Me_{2}$$

$$Me_{2}Me_{2}$$

$$Me_{2}Ne_{2}$$

$$R_{2}N NR_{2}$$

$$R_{2}N NR_{2}$$

$$R_{2}N NR_{2}$$

$$R_{3}N NR_{2}$$

$$R_{4}NR_{2}$$

$$R_{4}NR_{2}$$

$$R_{5}NR_{2}$$

$$R_{6}NR_{2}$$

$$R_{7}NR_{2}$$

$$R_{7}NR_{2}$$

$$R_{7}NR_{2}$$

$$R_{7}NR_{2}$$

$$R_{7}NR_{2}$$

höherer Temperatur eine Monomerisierung von 4, wobei über die Stufe *i*Pr₂NBeO₂CN*i*Pr₂ durch CO₂-Insertion 2a entsteht³.

Trimeres Beryllium(dimethylamid) (3) reagiert bei Raumtemperatur mit 2 mol CO₂ nach (4) zu der dreikernigen Beryllium-Verbindung 6, die auch in siedendem Toluol im Gegensatz zu 4 nicht mehr CO₂ aufnimmt. Demzufolge sind die N-Brücken in 6 sterisch bedingt wesentlich fester als in 4.

Die Anwendung höherer Reaktionstemperatur verbietet sich, da die (Dialkylcarbamoyloxy)beryllium-Verbindungen thermisch nicht sehr stabil sind. So zersetzt sich **2a** bei etwa 150°C unter Bildung der basischen Diisopropylcarbamoyloxy-Verbindung **7**. Analoge Zersetzungen zu vierkernigen Be-Verbindungen sind in der Chemie des Berylliums gut bekannt, etwa von Be(O₂CCH₃)₂⁴) oder Be(NO₃)₂⁵.

Spektren und Struktur

Die Dialkylcarbamoyloxy-Verbindungen 2, 4, 6 und 7 lösen sich in Cyclohexan mit der ihnen zugeschriebenen Formelmasse. Ihre Löslichkeit in polaren aprotischen Lösungsmitteln (CH₂Cl₂, CHCl₃, THF) übertrifft die in apolaren (C₆H₆, Pentan).

Massenspektroskopisch wurde nur 7 näher untersucht. Das Molekül-Ion besitzt bei 70 eV nur eine geringe Intensität ($\approx 2\%$). Der Basispeak entsteht durch Verlust eines R_2NCO_2 -Fragments. Der weitere Zerfall führt unter Abspaltung von Propen bzw. Propylradikalen zu Ionen, die stets den Be₄O-Cluster enthalten.

Die NMR-Daten von 2 und 6 sind mit einer D_2 -Punktsymmetrie dieser Moleküle vereinbar, während man für 4 C_{2v} -Symmetrie erwarten kann. Nach den IR-Spektren liegt eine CN-Bindung mit hohem Doppelbindungsanteil⁶⁾ vor. Alle Be-Atome sind nach Ausweis der $\delta(^9\text{Be})$ -Werte und der Halbhöhenbreite tetrakoordiniert.

Diskussion

Die hohe Oxophilie des Berylliums, der geringere sterische Anspruch und die höhere Acidität sind sicher wesentliche Voraussetzung für die im Vergleich mit der CS₂-Insertion¹⁾ größere Reaktivität des CO₂ gegenüber den untersuchten Berylliumamiden. Obgleich die thermische Stabilität der (Dialkylcarbamoyloxy)beryllium-Verbindungen nicht sehr ausgeprägt ist, übertrifft sie dennoch die der (Dialkylcarbamoyloxy)borane⁷⁾, Hinweis auf eine größere Polarität der BeO-Bindung, aber auch darauf, daß der R₂NCO₂-Ligand bei den Beryllium-Verbindungen stets zweizähnig vorliegt. Dies ermöglicht eine symmetrische Ladungsverteilung und Resonanzstabilisierung des Liganden.

Wir danken dem Fonds der Chemischen Industrie, der BASF-Aktiengesellschaft und der Chemetal GmbH für Unterstützung unserer Arbeiten, ferner Fräulein U. Stara für Mithilfe bei der Versuchsdurchführung.

Experimenteller Teil

Allgemeine Versuchsbedingungen, Ausgangsverbindungen und die für die Aufnahme der Spektren dienenden Geräte sind in Lit. 11 beschrieben bzw. aufgeführt.

Bis(diisopropylcarbamoyloxy) beryllium (2a): Durch eine Lösung von 1.41 g (6.73 mmol) Be[N(CHMe₂)₂]₂ (1a) in 25 ml CH₂Cl₂ leitet man 1 h trockenes CO₂ unter kräftigem Rühren. Von der Lösung entfernt man danach i. Vak. das CH₂Cl₂, löst den festen Rückstand (2.02 g) in 50 ml Pentan und isoliert bei -20°C das ausgefallene, sehr fein-kristalline 2a. Ausb. 1.56 g (78%), Schmp. 130–136°C. – NMR (CDCl₃): δ(¹H) = 1.12 d, 3.86 sept (³J_{1HI} = 6.05 Hz); δ(⁹Be) = -0.89 ($h_{1.2}$ = 1.0 Hz); δ(¹³C) = 21.06 q, 45.54 d, 160.58 s.

C₁₄H₂₈BeN₂O₄ (297.5) Ber. C 56.53 H 9.51 N 9.42 Gef. C 54.93 H 8.86 N 8.76

Molmasse Gef. 293 (kryoskop. in Cyclohexan)

Hexakis (diisopropylcarbamoyloxy) tetraberylliumoxid (7): 3.25 g (11 mmol) 2a werden bei $3.4 \cdot 10^{-3}$ Torr auf 185 °C erhitzt. Entstehendes Sublimat wird an einem Kühlfinger kondensiert. Ausb. 1.76 g (70%) 7 vom Schmp. 245–246 °C. – NMR (CDCl₃): $\delta(^{1}\text{H}) = 1.28 \text{ d}$, 3.94 sept $[^{3}J_{\text{HH}} = 6.05 \text{ Hz}$ (6.1:1.0]; $\delta(^{9}\text{Be}) = -0.81$ ($h_{1/2} = 2.5 \text{ Hz}$); $\delta(^{13}\text{C}) = 21.29 \text{ q}$, 45.77 d, 162.53 s.

 $C_{46}H_{84}Be_4N_6O_{13}$ (917.4)

Ber. C 54.99 H 9.25 N 9.16 Gef. C 53.74 H 7.93 N 8.95

Molmasse Gef. 917 (MS), 908 (kryoskop. in Cyclohexan)

Bis(2,2,6,6-tetramethylpiperidinocarbamoyloxy) beryllium (2b): In Analogie zu 2a durch Einleiten von trockenem CO₂ in eine Lösung von 1.17 g (4.04 mmol) Be(tmp)₂ (1b) in 25 ml Dichlormethan. Nach Entfernen des Lösungsmittels wird der Rückstand aus 5 ml Pentan umgelöst. Bei -20°C fielen 0.97 g (64%) 2b aus, Schmp. 189 bis 190°C. - NMR (CDCl₃): $\delta(^{1}\text{H}) = 1.11$ s, 1.33 m; $\delta(^{9}\text{Be}) = -0.93$ ($h_{1/2} = 7$ Hz); $\delta(^{13}\text{C}) = 18.28$ q, 31.45 t, 38.50 t, 49.79 s.

C₂₀H₃₆BeN₂O₄ (377.5) Ber. C 63.62 H 9.63 N 7.42 Gef. C 61.14 H 9.05 N 6.58

Molmasse Gef. 374 (kryoskop. in Cyclohexan)

Dimeres Diisopropylamino (diisopropylcarbamoyloxy) beryllium (4): Durch eine Lösung von 1.53 g (3.65 mmol) $\{Be[N(CHMe_2)_2]_2\}_2$ (3) in 25 ml CH₂Cl₂ wird trockenes CO₂ zusammen mit N₂ geperlt (Überleiten von N₂-Gas über festes CO₂, Trocknen mit P₄O₁₀), und die Lösung danach kurz unter Rückfluß erhitzt. Nach Entfernen alles Flüchtigen löst man den Rückstand in 5 ml Pentan. Nach mehrstündigem Stehenlassen bei -20° C sind 1.24 g (67%) pulvriges 4 isolierbar, Schmp. 156–157 °C. – NMR (CDCl₃): $\delta(^{1}$ H) = 1.41 d, 3.26 sept ($^{3}J_{HH}$ = 6.35 Hz, R₂NCO₂-Gruppe), 1.61 d, 4.32 sept ($^{3}J_{HH}$ = 6.59 Hz, R₂N-Gruppe); $\delta(^{9}$ Be) = -0.70 ($h_{1/2}$ = 1.8 Hz); $\delta(^{13}$ C) = 20.97 q, 23.34 q, 45.48 d, 45.69 d, 172.83 s.

C₂₆H₅₆Be₂N₄O₄ (506.9) Ber. C 61.80 H 11.16 N 11.06 Gef. C 59.23 H 10.45 N 10.44 Molmasse Gef. 501 (kryoskop. in Cyclohexan)

Bis (dimethylcarbamoyloxy) tetrakis (μ-dimethylamino) triberyllium (6): 1.58 g (5.42 mmol) trimeres Be(NMe₂)₂ (5) werden in 30 ml Toluol gelöst. Durch die zum Sieden erhitzte Lösung perlt man 2 h einen CO_2/N_2 -Strom. Nach Abkühlen auf 50°C wird das Lösungsmittel i. Vak. verdampft und der Rückstand (2.11 g) in 8 ml siedendem Pentan gelöst. Bei -20°C kristallisieren 1.71 g (83%) 6 vom Schmp. 295-297°C. - NMR (CDCl₃): $\delta(^1H) = 2.32$ s, 2.97 s (2:1); $\delta(^9Be) = -0.79$ ($h_{1/2} = 8$ Hz), -0.87 ($h_{1/2} = 7$ Hz); $\delta(^{13}C) = 41.45$ q, 43.39 q, 162.31 s.

C₁₄H₃₆Be₃N₆O₄ (379.6) Ber. C 44.30 H 9.58 N 22.14 Gef. C 42.95 H 8.77 N 21.84 Molmasse Gef. 372 (kryoskop. in Cyclohexan)

CAS-Registry-Nummern

1a: 86563-54-4 / 1b: 86563-55-5 / 2a: 114581-04-3 / 2b: 114581-05-4 / 3: 86563-58-8 / 4: 114581-06-5 / 5: 14784-85-1 / 6: 114581-07-6 / 7: 114581-08-7 / CO₂: 124-38-9 / tmpH: 768-66-1 / HNiPr₂: 108-18-9 / HNMe₂: 124-40-3

³⁾ Da 3 sehr rasch CO₂ aufnimmt, ist es weniger wahrscheinlich, daß vor der CO₂-Insertion die Monomerisierung von 3 zu 1a stattfindet.

stattfindet.

4) W. H. Bragg, G.T. Morgan, Progr. Roy. Soc. 104 (1923) 437.

5) G. Urbian, H. Lecombe, C. R. Acad. Sci. 133 (1901) 874.

6) L. J. Bellamy, Ultrarot-Spektrum und chemische Konstitution, Steinkopf-Verlag, Darmstadt 1966.

7) H. Cragg, M. F. Lappert, H. Nöth, P. Schweizer, B. P. Tilley, Chem. Ber. 100 (1967) 2377; G. Abeler, H. Nöth, H. Schick, ibid. 101 (1968) 3981.

[86/88]

^{1) 2.} Mitteilung: H. Nöth, D. Schlosser, Chem. Ber. 121 (1988) 1711, voranstehend.

²⁾ H. Nöth, D. Schlosser, *Inorg. Chem.* 23 (1983) 2700.